XML Schema Transformations
The ELaX Approach

Thomas Nosinger, Meike Klettke, and Andreas Heuer

Database Research Group
University of Rostock, 18051 Rostock, Germany
(tn, meike, ah)@informatik.uni-rostock.de

Abstract. In this article the transformation language ELaX (Evolution
Language for XML-Schema) for modifying existing XML Schemas is in-
troduced. This domain-specific language was developed to fulfill the cru-
cial need to handle modifications on an XML Schema and to express
such modifications formally. The language has a readable, simple, base-
model-oriented syntax, but it is able to also express more complex trans-
formations by using add, delete and update operations. A small subset
of operations of the whole language is presented and illustrated partially
by dealing with a real life XML Schema of the WSWC (Western States
Water Council). Finally, the idea of integrating an ELaX interface into
an existing research prototype for dealing with the co-evolution of cor-
responding XML documents is presented.

1 Introduction

The eXtensible Markup Language (XML) [2] is one of the most popular for-
mats for exchanging and storing structured and semi-structured information in
heterogeneous environments. To assure that well-defined XML documents can
be understood by every participant (e.g. user or application) it is necessary to
introduce a document description, which contains information about allowed
structures, constraints, data types and so on. XML Schema [6] is one commonly
used standard for dealing with this problem. An XML document is called valid,
if it fulfills all restrictions and conditions of an associated XML Schema.

After using an XML Schema the requirements against exchanged information
can change over time. To meet these requirements the schema has to be adapted,
for example if additional elements are added into an existing content model, the
data type of information are changed or integrity constraints are introduced.
All in all, every possible structure of an XML Schema definition (XSD) can
be changed. The occurring problem is: how can adaptions be described and
formulated under consideration of the underlying XML schema definition in a
descriptive, intuitive and easy-understandable way? The definition of a schema
update language is absolutely necessary; we introduce such a language in this
paper.

A further issue, not covered in this paper, but important in the overall context
of exchanging information, is the validity of XML documents. The resulting



problem of modifying an XML Schema is, existing XML documents, which were
valid against the former XML Schema, have to be adapted as well (also known
as co-evolution). One unpractical way to handle this problem is to introduce
different versions of an XML Schema, but in this case all versions have to be
stored and every participant in the heterogeneous environment has to understand
all different document descriptions. An alternative solution is the evolution of
the XML Schema, so that just one document description exists at one time. The
above mentioned validity problem of XML documents is not solved, but with the
standardized description of the adaptions (e.g. a sequence of operations of an
update language) it is possible to automatically derive necessary XML document
transformation steps based on these adaptions [14].

The new evolution language for XML Schema (ELaX - Evolution Language
for XML-Schema) is our answer to the above mentioned problems. With ELaX it
is possible to describe and formulate XML Schema modifications under consider-
ation of the underlying model (XSD). Furthermore, it is an essential prerequisite
for the here not in detail but incidentally handled process of the evolution of
XML Schema.

This paper is organized as follows. Section 2 introduces a running example,
which defines a realistic scenario for the use of ELaX. Section 3 gives the nec-
essary background of XML Schema and corresponding concepts. Section 4 and
section 5 present our approach, by first specifying the basic statements of ELaX
and then showing how our approach can contribute to the scenario discussed in
section 2. In section 6 we describe the practical use of ELaX in our prototype,
which was developed for handling the co-evolution of XML Schema and XML
documents. In section 7 we discuss some related transformation language for
XML Schema. Finally, in section 8 we draw our conclusions.

2 Running Example

Information exchange specifications usually provide some kind of XML Schema
which contains information about allowed structures, constraints, data types
and so on. One example is the WSWC (Western States Water Council), an
organization which accomplishes effective cooperation among 18 western states
in the conservation, development and management of water resources. Another
purpose is the exchange of views, perspectives and experiences among member
states - summarized the exchange of information. The expected format for XML
data exchange is defined in a set of XML Schemas (current draft v.02), one XML
Schema for reports is presented in the following. Due to space limitations, the
chosen example is a simple one, annotations were folded and some parts were
deleted and replaced by ”[..]”.

The original XML Schema is illustrated in figure 1. According to the complex
type ("ReportDataType”) a report (the component "Report”) is a sequence
of an obligatory report identifier ("WC:Reportldentifier”), an optional name
("WC:ReportName”) and a set of reported units ("WC:ReportingUnit”). The
element declarations not given in this schema are specified in external XML



<7xml version="1.0" encoding="utf-§"7>
<xsd:schema xmlins:WC="http://www.exchangenstwork.net/schema/\WWC/0"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
targetMamespace="http-/imww_exchangenetwork net/schemaWC/0"> [ ]
<xsd-include schemalocation="WC_ReportingUnit_v0.2.xsd"/=
<xsd:annotation/=
<xsd-element name="Report" type="WC:ReportDataType"=[..]</xsd-element=
<xsd:-complexType name="ReportDataType">
! «xsd-annotation/>
<xsd:sequence>
i =xsd-element ref="WC:Reportldentifier/=[ ]
<xsd:element ref="WC:ReportName" minOccurs="0"/>[..]
i <xsd:element ref="WC:ReportingUnit” maxOccurs="unbounded"(=
</xsd:sequence>
<fxsd:complexType=
<fxsd:schemaz

Fig. 1. The original WSWC report XML Schema

Schemas, which are represented by the ”xsd:include” component. This original
report is adapted; the result is the XML Schema presented in figure 2 (changed
and added parts are highlighted by rectangles).

<?xml version="1.0" encoding="utf-8"7=
<xsd:-schema xmins:WC="http:/fmww. exchangenstwork.net/schematWC/0"
xmins:xsd="http:/www.w3.org/2001/XMLSchema”
targetlamespace="http://www exchangenetwork net/schemaMWC/0"> [ ]
<xsd:include schemalocation="WC_ReportingUnit_v0.2.xsd"/>
<xsd:annotation/>
=xsd-element name="Report" type="WC:ReportDataType"=[. ]</xsd-element>
<xsd:complexType name="ReportDataType">
<xsd.annotation/>
<xsd:sequences
i axsd-element ref="WC:Reportidentifier"/=[_ 3
<xsd-element ref=“WC:Rep0rtName"
i <xsd:element ref="WC:ReportingUnit™ maxUccurs="unbounded"/>
<fxsd:sequences
</xsd:complexTypes 1
<xsd.complexType name="ReportListDataType™>
<xsd:sequences
i axsdelement ref="WC:Report” minOccurs="0" maxOccurs="10"/=
<fxsd:sequences
</xsd.complexType= 2
<xsd-element name="ReportList” type="WC:ReportListDataType"»</xsd-element>|
</xsd:schema=

Fig. 2. The adapted WSWC report XML Schema

The modifications have the purpose to summarize information in only one
report that otherwise would be spread over multiple small reports. This is for
example possible by combining different reports. In general, a new complex
type ("ReportListDataType”) and a new element declaration (”ReportList”)
are added. Furthermore, the name of a report is no longer optional, the mini-
mum occurrence is changed to one (i.e. it is obligatory). The question is how
can these modifications be described formally? Before presenting one possibility
(i.e. ELaX), some background information and notations are presented in the
following chapter.



3 Technical Background

In this section we present a common notation used in the remainder of this
paper. At first, we will shortly introduce the abstract data model and element
information item of XML Schema, before further details concerning different
modeling styles are given.

The XML Schema abstract data model consists of different components or
node types!. Basically, these are: type definition components (simple and com-
plex types), declaration components (elements and attributes), model group
components, constraint components, group definition components and annota-
tion components [4]. Additionally, the element information item serves as an
XML representation of these components. The element information item defines
which content and attributes can be used in an XML Schema. The following ta-
ble 1 gives an overview about the most important components and their concrete
representation.

Abstract Data Model Element Information Item
declarations <element>, <attribute>
group-definitions <attributeGroup>
model-groups <all>, <choice>, <sequence>,
<any>, <anyAttribute>
type-definitions <simpleType>, <complexType>
N.N. <include>, <import>,
<redefine>, <overwrite>
annotations <annotation>
constraints <key>, <unique>, <keyref>,
<assert>, <assertion>
N.N. <schema>

Table 1. Abstract Data Model and XML representation

The <include>, <import>, <redefine> and <overwrite> items are not ex-
plicitly given in the abstract data model (N.N. - Not Named), but they are
important components for embedding externally defined XML Schemas (esp. el-
ement declarations, attribute declarations and type definitions). In the remaining
parts of the paper, we will summarize them under the node type ”module”. The
<schema> item ”is the document (root) element of any W3C XML Schema.
It’s both a container for all the declarations and definitions of the schema and a
place holder for a number of default values expressed as attributes” [17].

Analyzing the possibilities of specifying declarations and definitions leads to
four different modeling styles of XML Schema [13]. These modeling styles mainly
influence the re-usability of element declarations or defined data types but also
the flexibility of an XML Schema in general. The scope of element and attribute

1 An XML Schema can be visualized as a directed graph with different nodes (com-
ponents); an edge represents the hierarchy between two nodes



declarations as well as the scope of type definitions is global iff the corresponding
node is specified as a child of the <schema> item and can be referenced (e.g.
by knowing the name and namespace). In contrast, locally specified nodes are
not directly defined under the <schema> item, therefore the re-usability is low.
Table 2 summarizes the modeling styles according to [13]:

Scope Russian | Salami |Venetian| Garden
Doll Slice Blind | of Eden
element and local X b
attribute declaration global X be
. local X X
type definition alobal " "

Table 2. Overview of XSD modeling styles according to [13]

An XML Schema in the Garden of Eden style just contains global declara-
tions and definitions. If the requirements against exchanged information change
and the underlying schema has to be adapted then this modeling style is the
most suitable one. That is, because all components can be easily identified by
knowing the QNAME (qualified name). Furthermore, the position of compo-
nents within an XML Schema is obvious. A qualified name is a colon separated
string of the target namespace of the XML Schema followed by the name of the
declaration or definition. The name of a declaration and definition is a string
of the data type NCNAME (non-colonized name), a string without colons. Due
to the characteristics of the Garden of Eden style, it is the basic modeling style
which is considered in this paper, a transformation between different styles is
easily possible.?

4 XML Schema Transformation Language

In order to handle modifications on an XML Schema and to express these mod-
ifications formally, an adequate transformation language is absolutely essential.
Therefore, we developed ELaX (Evolution Language for XML-Schema) which
lets the user describe modifications in a simple, easily-understandable and ex-
plicit manner. The following criteria were important through the development
process, parts were already mentioned above:

1. Consideration of the underlying data model (i.e. the abstract data model and
element information item of the XML Schema definition)

2. Adequate and complete realization of the common operations ADD, UP-
DATE, DELETE

2 A student thesis to address the issue of converting different modeling styles into each
other is in progress at our professorship; this is not covered in this paper.



3. Definition of an descriptive and readable interface for creating, changing and
deleting XML Schema
4. Intuitive and simple syntax of operation steps

The abstract data model and the element information item consist of different
node types, which have to be adapted. These node types are substantially sum-
marized: elements and attributes (declarations), content models (model group
components), data types (simple and complex type definitions), modules (exter-
nally defined schema, e.g. included, redefined or imported schema), annotations,
constraints and the schema itself. On these node types the operations ADD,
DELETE and UPDATE have to be executed; the first ELaX statements are in
an EBNF (Extended Backus-Naur Form) like notation:

elax := ((< add > | < delete > | < update >) ”;”) + ; (1)
add = "add” (< addannotation > | < addattributegroup >
| < addgroup > | < addst > | < addct > | < addelement >  (2)
| < addmodule > | < addconstraint >) ;
delete ::= "delete” (< delannotation > | < delattributegroup >
| < delgroup > | < delst > | < delct > | < delelement > (3)
| < delmodule > | < delconstraint >) ;
update ::= "update” (< updannotation > | < updattributegroup >
| < updgroup > | < updst > | < updct > | < updelement >  (4)
| < updmodule > | < updconstraint > | < updschema >) ;

An ELaX statement always starts with "add”, ”delete” or "update” followed
by one of the alternative components for modifying the different node types.
Every component of rule (1) can optionally be repeated one or more times (i.e.
”4"), consequently an encapsulation or ordered sequence of operations is pos-
sible. The operations are separated by ”;”. By using the rules (1), (2), (3) and
(4), complex modifications of an XML Schema can be expressed formally. In
the following subsections the statements for adding (<addelement>), deleting
(<delelement>) and updating (<updelement>) elements are presented in de-
tail.?

4.1 Adding elements

According to the Garden of Eden modeling style, elements are either defined as
element declarations in the global scope of an XML Schema or as references to
such declarations. Furthermore, it is possible to define wildcards, which provide
”for validation of attribute and element information items dependent on their

3 The statements not presented (i.e. the whole update language ELaX) are available
at: www.ls-dbis.de/elax



namespace name, but independently of their local name” [4]. Wildcards are one
reason for the high extensibility of XML. The following statements realize the
add operation for elements:

addelement := < addelementdef > | < addelementref >
| < addelementwildard > ;
addelementdef ::= "element” "name” ncname ”type” qname
dd l td f ” l t77 ” b 77ty ”
(("default”|” fized”) string )? (7 final” (?#all” |’ restriction”
|”extension”))? ("nillable” ("true”|” false”))? ("id” id )?
( form” (?qualified”|"unqualified”))? ;
addelementref ::= 7element” "ref” qname ("minoccurs” int )?
mazoccurs” int )? (7id” id )? < position > ;
(77 ” int )? (w i id )7 p iti :
addelementwildard ::= "any” ("not” ( quame | (" ##definedsibling”
|"##defined”)) +)? ("namespace” (" #H#any”|” #4#other” | ( anyuri
oca argetnamespace”)+) ("no anyuri oca
7 #l l” 77# t t 9 ” t” M 77# l l77

|7’

#H#targetnamespace”))+)?)? ("processcontent” (”lax

» |77

skip”
|”strict”))? ("minoccurs” int )? ("maxoccurs” int )? ("id” id )?

7in” < locator > ;

Before going into detail, further components are necessary to localize or iden-
tify elements and node types in general. It is possible to localize node types in
a content model under consideration of the node neighborhood with statement
(9) and to identify a node type itself by using an absolute addressing (11). An
absolute addressing always begins at the ”document (root) element” whereas a
relative address starts at the current selected node type.

position = (Pafter”|?before”| (Pas” (” first”|"last”) Vinto”) |"in”) )
< locator > ;
locator ::= < xpathexpr > | emxid ; (10)

xpathexpr == (" /7 ("7 | ("node()” | ("node()[@name =" "ncname”’]”)) ()
(” [77 int 77]77)? ) ) + ;

An element reference statement (7) starts with ”element ref”, followed by the
qualified name of the referenced element declaration (qname) and other, optional
attributes for the frequency of occurrence (”minoccurs”, ”maxoccurs”) or an
XML Schema id (id”). An element reference can be added ”after”, ”before”, ”as
first into”, ”as last into” or ”in” the model-group node type (i.e. sequence, choice,
all) with consideration of the node neighborhood and using statement (9). The
identification of nodes is possible with a unique identifier of our conceptual model



(emxid)?. Alternatively, a subset of XPath expressions (<xpathexpr>) can be
used to create an absolute path. The subset of XPath contains the navigation
steps child (”child::node()” resp. ”/”), self ("self::node()” resp. ”.”), and also
the general navigation without a predicate ("node()”), with a specified name
in a predicate ("node()[..]”) or by using the position (”[int]”). The position is
always needed if an XPath expression returns a set of nodes instead of a single
node - otherwise the identified node would not be unique (e.g. same named
nodes in a content model sequence). The given subset is sufficient for the simple
localization or identification of every node type in the Garden of Eden style.
This is possible, because every declaration or definition has a global scope and
the maximum nesting depth is limited.

In the Garden of Eden style, element declarations (6) are added under the
element information item of the schema itself. Furthermore, the order and neigh-
borhood of element declaration nodes do not influence the XML Schema, so no
special positioning is necessary.

Element wildcards are added at the end of a content model node (i.e. sequence
or choice) with statement (8) according to the XML Schema specification. The
identification of the parent node is sufficient for adding wildcards.

4.2 Deleting elements

It is possible to add element declarations, references and wildcards with state-
ment (2). Following, the removal of such parts is described. Compared to the
add operation, deleting an element basically just requires some information of
identification. The qualified name in general and in the case of references and
wildcards also the position of an element is sufficient. The following statements
realize the delete operation for elements:

delelement ::= < delelementdef > | < delelementref >

. (12)
| < delelementwildcard >
delelementdef ::= "element” "name” qname ; (13)
delelementref ::= "element” "ref” gqname (14)
("at” < locator > | < refposition >) ;
delelementwildcard ::= "any” ”at” < locator > ; (15)
refposition = ((” first”|"last”|"all”| ("at” ”position” int )) (16)

7in” < xpathexpr >) | emxid ;

The element reference statement (14) starts with ”element ref”, followed by
the qualified name and information about the locator (introduced in section
4.1, statement (10)) or about the position of the reference (<refposition>). The
reference position statement (16) enables the localization of one reference if

4 Our conceptual model is EMX (Entity Model for XML Schema)[11], in which every
node of a model has its own, global identifier; see also section 6



more than one is given in the same group-model node type. With this statement
the 7first”, the "last”, "all” of them or a reference at a specific position (”at
position”) can be deleted. If the unique identifier of the conceptual model is
known, the emxid can be used instead of the XPath expression.

The element declaration is uniquely identified with its qualified name, be-
cause it is located directly under the element information item of the schema
itself.

An element wildcard needs the localization of the parent node, according to
the adding statement (8). More than one wildcard is not valid according to the
XML Schema specification.

4.3 Updating elements

Updating elements is implemented by rule (4). Basically, all added elements with
their given information can be updated afterwards. Also, adding new information
to an existing element is considered, so the specification of an update of elements
is similar to the adding of them. In general, the qualified name, the new values
or additional information and the position of an element when dealing with
references or wildcards are needed. The following statements realize the update
operation for elements:

updelement ::=< updelementdef > | < updelementref > (17)
| < updelementwildcard > ;

updelementdef ::= "element” "name” qname ”change”
("name” ncname )? (Ptype” qname )? (("default’|” fized’
string )? (7 final” ("#all”|"restriction”|” extension”))? (18)
Cnillable” (true’|” false”))? (id” id )?
(" form” (?qualified’ | unqualified’))? ;

updelementref ::= "element” "ref” qname (("at” < locator >)
| < refposition > ) ("change” ("ref” qname )?
("minoccurs” int )? ("mazoccurs” int )? (Pid” id )? )?
("move” "to” < position >)7 ;

updelementwildcard ::== "any” ”at” < locator > " change”
("not” ( qname | ("#+#tdefined”|” #4de finedsibling”))+)?
("namespace” (" ##any” " ##other”| (##local”| anyuri
| ##targetnamespace”)+) ("not” (anyuri |(” ##targetnamespace”
|"##local”))+)?)? ("processcontent” ("lax”|” skip”|” strict”))?

(?minoccurs” int )? ("mazxoccurs” int )? (Pid” id )? ;

(20)

Element references are adapted with statement (19). Starting with ”element
ref” | the qualified name and information about the position element references



can be updated. The newly given or changed information are specified after
”change”. This information comprises a list of tuples of an identifier and the
corresponding value, they are always optional (i.e. 7?”). For example the mini-
mal occurrence can be changed to the value 5 using ”[..] change minoccurs 5.
Furthermore, it is possible to move an element reference, that is why the ”move
to” component was inserted at the end of the statement (19). The move opera-
tion is a short form for deleting and inserting an element reference completely.
The information regarding the localization of references was mentioned above
(<locator> and <position> in section 4.1, <refposition> in section 4.2).

Element declarations and wildcards are adapted with statements (18) and
(20). In both cases the corresponding statement is a sequence of an element
identifier (qualified name or location), followed by ”change” and completed with
optional tuples of identifier and value. After introducing some basic statements
of ELaX, we want to pursue with the running example (section 2) and use those
statements for adapting the given XML Schema.

5 Example

In section 2 an XML Schema for exchange reports of the WSWC (Western
States Water Council) was introduced. The basic schema of figure 1 should be
adapted to the XML Schema of figure 2. The main idea of the adaptions was the
grouping of ten reports in a list in order to summarize information in one report
that otherwise would be spread over multiple small reports. In general, three
different steps are necessary to modify the old schema (the steps are visualized
in labelled rectangles in figure 2):

1. Insert a new type, which contains up to ten reports
2. Insert a new element, which has the new introduced type of step 1
3. Update the "ReportDataType” type so that the report name is obligatory

Following, the necessary ELaX operations for the above mentioned steps are
described, the syntax of statements which are not directly introduced in section 4
are mentioned in footnotes®. Furthermore, the replaced values of the data types

5 Syntax of components <addct> and <addgroup> of rule (2):

9

addct ::= " complextype” "name” ncname (Pmized’ (true’|” false”’))?

( final? (?#all” |’ restriction” |’ extension”))? ("mode” (”extension_cc” |

Vextension_sc” | restriction_cc”|”
(7id” id )? ("defaultattributesapply” ("true”’|” false”))? (< assert > x)7 ;

assert ::="assert” string (< zpathde faultnamespace >)? (7id” id)? ;

restriction_sc”) "with” ”base” qname )?

xpathde faultnamespace ::= 7 xpathde faultnamespace” ( anyuri |
(" #+#tde faultnamespace” |” ##targetnamespace”|” #4#local”));

addgroup ::= " group mode” (” sequence”|” choice” |” all” ) (P with” < groupdefault >)?
(?”minoccurs” int )? ("mazxoccurs” int )? ("id” id )? 7in” < locator > ;

groupde fault ::= 7 first” | last” | int ;



are boldfaced in every following operation, e.g. the values of QNAME, NCNAME
or XPath statements.

Step 1: First of all, a new type has to be inserted. This is a complex type,
because the new type has a complex content model which contains different ele-
ments (the reports of the ”old” XML Schema). The new complex type gets the
NCNAME ”ReportListDataType”. After specifying the complex type, a group-
model node type is inserted as a child of the new complex type. In our exam-
ple, this is defined as a sequence. The last operation within the first step is
performed by inserting an element reference into the sequence. The necessary
element declaration is ”"Report”, this element can be referenced by the QNAME
?WC:Report”. This approach is possible because the XML Schema is modeled
in Garden of Eden style and moreover, because the target namespace is known
(i.e. "WC”). Information about the occurrence is also given, up to ten reports
can be collected in the report list. According to that the maximum occurrence
value is fixed to ten, the minimum occurrence is fixed to zero (i.e. optional). The
following ELaX operations have to be executed, the sequence of applied rules
are listed below every operation:

add complextype name ReportListDataType ;
Sequence of rules: (1), (2), addct™®t ® (P2e up)
add group mode sequence in
/node()/node()[@name="ReportListDataType’] ; (22)
Sequence of rules: (1), (2), addgroup™®*® ® (P2&° UP) " (10) (11), (11)
add element ref WC:Report minoccurs 0 mazoccurs 10 in
/node() /node()[@name="ReportListDataType’] /node() ; (23)
Sequence of rules: (1), (2), (5), (7), (9), (10), (11), (11), (11)

(21)

The correct order of the operations (21), (22) and (23) is specified in the
element information item of XML Schema and represents the result of the im-
plicitly given relationships of node types. For example it is necessary to define
a complex type (type-definition node type) before a model-group node type can
be inserted into it. The XSD corresponding execution of operations can easily
be guaranteed by using simple rules; this approach is not covered in this paper.

Step 2: After specifying a new complex type in step 1, a new element declara-
tion with this complex type has to be defined. The NCNAME of this new element
is "ReportList”, the qualified name of the complex type is ”WC:ReportList-
DataType”. Further information are not required, because element declarations
are inserted into the global scope of the XML Schema and other attributes (e.g.
default values) are not given.

add element name ReportList type WC:ReportListDataType ;

(24)
Sequence of rules: (1), (2), (5), (6)



Step 3: The last adaption of the XML Schema in figure 1 contains changing
the occurrence of the report name. In our example it is changed from ”"minOccurs
="0"" to "minOccurs = '1"”. Consequently, the name is no longer optional but
obligatory. The corresponding operation is applied as follows:

update element ref WC:ReportName at /node()/node()
[@name="ReportDataType’]/node()[2] change minoccurs 1 ;  (25)
Sequence of rules: (1), (4), part I (19), (10), (11), (11), (11), part II (19)

The XML Schema of figure 1 is adapted with operations (21), (22), (23), (24)
and (25). This simple example illustrates how modifications can be described
formally by using ELaX statements introduced in section 4. In general, three
different steps were necessary to fulfill the new requirements against the XML
Schema of exchanged reports according to section 2. More complex examples are
easy to construct, but due to the limitation aspects this is not covered in this

paper.

6 Practical Use of ELaX

The transformation language ELaX was specified for dealing with XML Schema
modifications. It is useful to describe and formulate different adaptions of an
XML Schema. In general, this reflects all add, delete and update operations
which are possible considering the underlying base model (XSD). In section 1,
the co-evolution of XML documents was already mentioned. If an XML Schema
is adapted then possibly the XML documents have to be adapted as well to
recover their validity against the new XML Schema. The question is how can
these adaptions of XML Schema be used to derive all necessary XML document
transformations automatically?

At the University of Rostock a research prototype named CodeX (Conceptual
design and evolution for XML Schema) was developed for dealing with co-
evolution. The idea behind CodeX is simple and straightforward at the same
time: A given XML Schema is transformed to the specifically developed con-
ceptual model (EMX - Entity Model for XML Schema [15]). With the help
of this simplified model, the desired modifications are defined and logged (i.e.
user interaction) and then used to automatically create transformation steps for
adapting the XML documents (by using XSLT - Extensible Stylesheet Language
Transformations [1]). The mapping between EMX and XSD is unique, so it is
possible to describe modifications not only on the EMX but also on the XSD.
ELaX is useful to unify the collected information and additionally provides an
interface for dealing directly with an XML Schema. The picture 3 illustrates the
component model of CodeX, primarily published in [14] but now extended with
the ELaX interface.

The component model illustrates the different parts for dealing with the
co-evolution. The main parts consist of an import and export component for



@1 Result

Data supply

v

\ GUI Schema modifications
il

)

h 4
( Visualization )( ELaX ) Import Export
vV A AV

Evolution engine XSD w XML XSLT XSD Config
: A ]

A A
S S . 2
“Model | P { spezification : E;“
mapping of operation : :
Model data i Evolution spezific data : evolution results
A 4 : > : .
Knowledge Y Y Y v Transformation:

base

Q:odex

Fig. 3. The integration of ELaX into prototype CodeX [10]

collecting and providing data of an user (XML Schemas, configuration files,
XML document collections, XSLT files), a knowledge base for storing informa-
tion (model data, evolution specific data and co-evolution results) and especially
the logged ELaX statements (”Log”). Moreover, the CodeX prototype also pro-
vides a graphical user interface ("GUI”), a visualization component for the con-
ceptual model and an evolution engine, in which the transformations are derived.
The new ELaX interface for modifying imported XML Schemas communicates
directly with the evolution engine.

Because the ELaX interface is implemented for the user-driven adaption of
XML Schema and ELaX is used for internal logging of modification steps, the
criteria for this transformation language (listed in section 4) are more important
than they seem to be at the beginning of this article: consideration of the base
model; adequate and complete realization of common operations; descriptive,
readable and without ignoring the other criteria a simple and intuitive syntax.

7 State of the Art

Regarding other transformation languages, there are some which may possibly be
used instead of ELaX. The most commonly to mention are XQuery and XSLT.

XSLT is ”a language for transforming XML documents into other XML doc-
uments” [1] so it can also deal with XML Schema (an XML Schema is basically
an XML document). XSLT works with templates and matching rules for identi-
fying structures and creates a new document (target) based on the original, old
document (source). That is why, every node type of an XML Schema, e.g. all
type definitions and declarations, have to be copied from the source to the target



although the nodes are not updated or changed. XSLT is very complex and dif-
ficult to understand, so the use and also the understanding of its results implies
a huge overhead. This language is neither suitable for describing modifications
nor for unifying the internal collected information within our context.

XQuery [3] as a query language for different XML data sources and espe-
cially the extension of it through the update facility [5] ”provide expressions
that can be used to make persistent changes” to instances of the abstract data
model (see section 3). In general, the different introduced operations are inte-
grated in the return clause of an XQuery statement, so it is possible to insert,
delete, replace, rename or transform parts of an XML Schema. But by using
all features of XQuery update, modifications can be produced that lead to non-
regular XML Schema [16]. This is why restrictions are required (e.g. avoiding
loops and conditional statements [16]). However, by focussing on which parts
of a complex update language (i.e. XQuery update) are suitable or which parts
lead to non-valid XML Schema, again an unintentional overhead is produced.
Furthermore, it is questionable whether XQuery statements are suitable for the
unified logging of modification steps.

In section 6 the integration of ELaX into our prototype was illustrated. Ex-
amples of prototypes developed by other working groups dealing with the evo-
lution of XML Schema include for example X-Evolution [9], EXup [7], the GEA
Framework [8] and XCase [12].5 To our knowledge, XSchemaUpdate (used in
X-Evolution and EXup) is the only XML Schema modification language which
is comparable to ELaX. XSchemaUpdate was also developed to modify given
XML Schema per interface. However, ELaX is closer to the base-model. ELaX
considers wildcards, constraints and attributes, which are explicitly allowed in a
node type considering the element information item of XML Schema. Moreover,
it distinguishes between element declarations and references (see rules (6) and
(7) in section 4.1) amongst others, so more fine-grained operations are possible,
which simplifies the analyzing of modification steps. Importantly, the other pro-
totypes do not contain such an XML Schema modification language like ELaX,
even though it is a good and practicable way for direct modifications of a given
XML Schema.

8 Conclusion

Valid XML documents need an XML Schema which specifies the possibilities
and usage of declarations, definitions and of structures in general. In a het-
erogeneous and dynamic environment (e.g. the information exchange scenario
mentioned above), also ”old” and longtime used XML Schema have to be mod-
ified to meet new requirements and to be up-to-date. Modifications of XML
Schema documents urgently need a description and a formalism in order to be
traceable. Therefore, we developed the new language ELaX (Evolution Language
for XML-Schema).

5 A detailed list containing also e.g. the State of the Art of databases are listed in [14]



ELaX is a base-model-oriented transformation language, which can be used
to modify a given XML Schema. These modifications are in general add, delete
and update operations on the node types of XML Schema which are specified
in the abstract data model and implemented in the element information item.
ELaX has a simple, intuitive and easy-understandable syntax, but nevertheless it
is powerful enough to describe more complex transformations by combining the
given operations. Moreover, it can be used to log modifications for the adaptions
of XML documents associated with a given XML Schema, which represents an
essential prerequisite for the co-evolution.

We are confident, that ELaX is user-friendly and easy to use for users with
some basic knowledge of XML Schema. In general, every ELaX operation is
something like: operation, node type, node identification or localization followed
by a list of optional tuples of information (attribute-value pairs).

One remaining step is the implementation of the language and the integration
into our research prototype CodeX (Conceptual design and evolution for XML
Schema), a student thesis is in progress at our professorship to deal with these
remaining steps. Afterwards, a final evaluation is planned.

References

1. XSL Transformations (XSLT) Version 2.0. http://www.w3.org/TR/2007/REC-
xs1t20-20070123/, January 2007. Online; accessed 26-March-2013.

2. Extensible Markup Language (XML) 1.0 (Fifth Edition).
http://www.w3.org/TR/2008 /REC-xml-20081126/, November 2008.  Online;
accessed 26-March-2013.

3. XQuery 1.0: An XML Query Language (Second Edition).
http://www.w3.0org/TR/2010/REC-xquery-20101214/, December 2010. On-
line; accessed 26-March-2013.

4. XQuery 1.0 and XPath 2.0 Data Model (XDM) (Second Edition).
http://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/, December
2010. Online; accessed 26-March-2013.

5. XQuery Update Facility 1.0. http://www.w3.org/TR/2011/REC-xquery-update-
10-20110317/, March 2011. Online; accessed 26-March-2013.

6. W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures.
http://www.w3.org/TR/2012/REC-xmlschemall-1-20120405/, April 2012. On-
line; accessed 26-March-2013.

7. Federico Cavalieri. EXup: an engine for the evolution of XML schemas and associ-
ated documents. In Proceedings of the 2010 EDBT/ICDT Workshops, EDBT 10,
pages 21:1-21:10, New York, NY, USA, 2010. ACM.

8. Eladio Dominguez, Jorge Lloret, Beatriz Pérez, Aurea Rodriguez, Angel Luis Ru-
bio, and Maria Antonia Zapata. Evolution of XML schemas and documents from
stereotyped UML class models: A traceable approach. Information €& Software
Technology, 53(1):34-50, 2011.

9. Giovanna Guerrini and Marco Mesiti. X-Evolution: A Comprehensive Approach
for XML Schema Evolution. In DEXA Workshops, pages 251-255, 2008.

10. Meike Klettke. Conceptual XML Schema Evolution - the CoDEX Approach for
Design and Redesign. In BTW Workshops, pages 53—-63, 2007.



11.

12.

13.

14.

15.

16.

17.

Meike Klettke. Modellierung, Bewertung und Fvolution wvon XML-
Dokumentkollektionen. Habilitation, Fakultat fiir Informatik und Elektrotechnik,
Universitat Rostock, 2007.

Jakub Klimek, Lukds Kopenec, Pavel Loupal, and Jakub Maly. XCase - A Tool
for Conceptual XML Data Modeling. In ADBIS (Workshops), pages 96—-103, 2009.
Eve Maler. Schema design rules for ubl...and maybe for you. In XML 2002 Pro-
ceedings by deepX, 2002.

Thomas Nésinger, Meike Klettke, and Andreas Heuer. Evolution von XML-
Schemata auf konzeptioneller Ebene - Ubersicht: Der CodeX-Ansatz zur Losung
des Giltigkeitsproblems. In Grundlagen von Datenbanken, pages 29-34, 2012.
Thomas Nosinger, Meike Klettke, and Andreas Heuer. A Conceptual Model for
the XML Schema Evolution - Overview: Storing, Base-Model-Mapping and Visu-
alization. In Grundlagen von Datenbanken, 2013.

Alessandro Solimando, Giorgio Delzanno, and Giovanna Guerrini. Static Analysis
of XML Document Adaptations. In Silvana Castano, Panos Vassiliadis, LaksV.
Lakshmanan, and MongLi Lee, editors, Advances in Conceptual Modeling, volume
7518 of Lecture Notes in Computer Science, pages 57-66. Springer, 2012.

Eric van der Vlist. XML Schema. O’Reilly & Associates, Inc., 2002.



